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Abstract
Finite-size effects are analysed for the well-known BKS model of silica. Results
are presented for thermodynamic as well as dynamic observables which play a
key role in the analysis of the potential energy landscape. It turns out that, for the
analysed temperature range (T � 3000 K), a system with only N = 99 particles
does not display significant finite-size effects in thermodynamic observables. In
agreement with previous work, one observes finite-size effects for the dynamics.
However, after rescaling of time the finite-size effects nearly disappear. These
results suggest that for BKS-silica a system with only N = 99 particles is
sufficiently large to study important properties of structural relaxation in the
temperature range considered.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For a better understanding of the underlying nature of the glass transition it has been proven
fruitful to use the concept of the potential energy landscape (PEL) (Goldstein 1969, Stillinger
and Weber 1982, Debenedetti and Stillinger 2001). In this framework the low-temperature
dynamics can be interpreted as hops between minima of the potential energy, denoted inherent
structures (IS). Going a step further one may even join adjacent IS, thereby forming metabasins
(MB) (Buechner and Heuer 2000, Doliwa and Heuer 2003a, 2003b, Denny et al 2003).
Qualitatively, one has achieved a discretization of the dynamics. Each MB is characterized
by its energy and its waiting time, i.e. the time the system needs to leave an MB. It has
been shown that to a very good approximation the temperature dependence of the diffusion
constant can be quantitatively related to the inverse of the average MB waiting time. Thus, the
macroscopic transport can be explicitly expressed in terms of locally defined MB waiting times.
Furthermore, a strong relation exists between the energy and the waiting time, thus establishing
a strong tie between thermodynamic and dynamic aspects of supercooled liquids.

Relaxation processes in supercooled liquids are spatially localized (Wales 2003). When
studying a very large system one would thus observe many independent relaxation processes.
As a consequence the total energy, and in particular its temporal evolution, is a sum of many
more or less independent contributions. This gives rise to major averaging effects. Thus, in
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recent years it has become popular to study relatively small systems (using periodic boundary
conditions, of course) to avoid this effect as much as possible; see, e.g., Denny et al (2003),
Doliwa and Heuer (2003a), Appignanesi et al (2006). Naturally, for too small systems finite-
size effects start to dominate the properties of the system. Therefore, the ideal system size is
determined by the condition that it is the smallest system for which finite-size effects are not
relevant.

For every system this has to be studied individually. In our previous work on the binary
Lennard-Jones mixture we have shown that N = 65 is sufficient for the range of temperatures
accessible to computer simulations (Doliwa and Heuer 2003c). An important aspect of the
analysis was the comparison of a system with N = 65 and with N = 130 particles. More
specifically, we have checked the hypothesis (H65) that a system with N = 130 = 2 × 65
particles behaves exactly as if it were a superposition of two strictly independent systems with
N = 65 particles. (H65) turned out to be true first for the distribution of MB, reflecting the
thermodynamics, and, second, for the dynamics. There we have predicted the distribution of
waiting times for N = 130 under (H65) and have checked that the result agrees very well with
the actual waiting time distribution.

Here we study the case of BKS-silica (van Beest et al 1990) which has been of major
interest due to its special role as a very strong glass-former (Horbach et al 1996, Horbach and
Kob 1999, Saika-Voivod et al 2001, Shell et al 2002, Saika-Voivod et al 2004). We will justify
that our previous choice of N = 99 particles (Saksaengwijit et al 2004, Saksaengwijit and
Heuer 2006a, 2006b) is very reasonable. Actually, the finite-size discussion for BKS-silica
is somewhat more complicated because it is known that, for example, the diffusion constant
and the α-relaxation time τα have a strong dependence on the system size (Horbach et al
1996). Despite these differences the incoherent scattering function S(q, t) can be scaled on
each other for different N � 60 (Saksaengwijit et al 2004). Thus, one may speculate that
after rescaling of time the underlying nature of the dynamics is unchanged when comparing
very small systems with macroscopic systems. Actually, some pieces of evidence for this
interpretation have been already reported (analysis of configurational entropy (Saksaengwijit
et al 2004), properties of tunnelling systems (Reinisch and Heuer 2005), activation energy of
oxygen diffusion (Saksaengwijit et al 2004)).

In this paper we analyse the nature of the finite-size effects more systematically by
checking (H99) when comparing N = 99 and N = 198 = 2×99. The choice of thermodynamic
and dynamic observables is governed by our ultimate goal of understanding the glass transition
in terms of PEL properties. Additional results for smaller and larger systems are included to
convey a general picture of the finite-size effects. Technical information about the BKS-silica
simulations can be found in Saksaengwijit et al (2004) and Saksaengwijit and Heuer (2006a).
We mainly present data for T = 3000 K.

2. Thermodynamics

A central observable is the Boltzmann energy distribution p(e, T ) of MB visited by the system
at a fixed temperature T . It is shown for different system sizes in figure 1. Whereas the
range of energies is somewhat comparable for all system sizes, one can clearly see that for
N � 30 there exist some specific energies with high population. Closer analysis reveals
that during the temporal evolution the system always comes back to the same configuration
except for permutation of particles. Their presence dominates the thermodynamics as well as
the dynamics. Similar effects have been already seen in Lennard-Jones systems (Heuer 1997,
Buechner and Heuer 1999, Keyes and Chowdhary 2002). In contrast, for N � 60 one has a
continuum of configurations.

2



J. Phys.: Condens. Matter 19 (2007) 205143 A Saksaengwijit and A Heuer

Figure 1. The histograms of p(e, T ) for different system sizes at T = 3000 K.

Figure 2. The histograms of p(e, T ) for N = 198 at various temperatures. Via G198,eff(e),
predicted from equation (1), we estimate p(e, T ) ∝ G198,eff(e) exp(−βe). They are shown as
solid lines.

Now we may check whether (H99) is fulfilled. If the anharmonic contributions are small
(which is the case for T � 4000 K) one can write p(e, T ) ∝ Geff(e) exp(−βe), where Geff(e)
is the full energy distribution of MB (including a possible dependence of harmonic force
constants on energy) (Sciortino et al 1999, Buechner and Heuer 1999). With (H99) one obtains

G198,eff(e) =
∫

de′ G99,eff(e
′)G99,eff(e − e′). (1)

This can be translated into a prediction for p(e, T ) for N = 198 based on the properties of
N = 99. The results are shown in figure 2.

One can clearly see that the agreement is close to perfect apart from a minor constant
downward shift of energy for N = 198 which, however, is irrelevant for the thermodynamic
properties. Note that the very good agreement implies that the cutoff in the PEL, reported for
N = 99 (Saksaengwijit et al 2004), is also there for N = 198, albeit more smeared out for
trivial statistical reasons. Actually, a similar analysis shows that, starting from N � 60 atoms,
thermodynamic finite-size effects become small.
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Figure 3. Incoherent intermediate scattering function S(q, t) with a wavevector q = 1.7 Å
−1

for
different system sizes at 3000 K. The inset shows S(q, t) after scaling the time axes, respectively.

3. Dynamics

A central observable for the dynamics is the incoherent scattering function S(q, t) analysed
close to the wavevector of the maximum of the structure factor. The results for T = 3000 K
are shown in figure 3. One can clearly see that, apart from the artificially small system of
N = 15 particles, S(q, t) displays the typical two-step decay, characteristic for supercooled
systems. Strictly speaking, up to the largest system size of N = 1002 one observes finite-size
effects, and even up to N = 3006 the curves will further shift, i.e. the plateau value as well
as the α-relaxation time τα decreases. However, for N � 99 this shift is relatively small (a
factor of 1.8 for τα when comparing N = 99 and 1002). Actually, for the diffusion constant
it has been numerically shown for a similar temperature that the timescale shifts by a factor
of approximately exp(−80/N), which for the present case would predict a factor of 2.1, in
agreement with the above value (Zhang et al 2004).

Strictly speaking, one cannot define (such as in the case of Lennard-Jones systems (Doliwa
and Heuer 2003c)) a system size N� such that the finite-size effects are significant for somewhat
smaller system sizes, and basically disappear for N > N�. Fortunately, this change in
behaviour around some system size is recovered if one allows for scaling of the time axis;
see the inset of figure 3. It turns out that for N � 60 the different curves are very similar. To
quantify this effect we have fitted the α-relaxation part of S(q, t) with a stretched exponential
exp(−(t/τ)β). One obtains a dramatic shift of β when going from N = 30 (β = 0.65) to
N = 60 (β = 0.80). Upon further increase of N one observes a systematic but small increase
of β to 0.86 for N = 1002. This is a first hint that apart from a scaling factor the α-relaxation
dynamics of silica, as expressed by S(q, t), only shows very small finite-size effects.

This conclusion can be corroborated from analysis of the whole MB waiting time
distribution, which is a very sensitive measure for the nature of relaxation processes in glass-
forming systems (Doliwa and Heuer 2003a, Denny et al 2003). Using (H99) it is possible
to predict the MB waiting time distribution p(log τ ) for N = 198 particles based on the
distribution for N = 99; see Doliwa and Heuer (2003c) for more technical details. The result
is shown in figure 4. After scaling the time axis of the predicted distribution for N = 198 by a
factor of approximately 1.3, one obtains a surprisingly good agreement between the prediction
and the actual waiting time distribution for N = 198. This strongly supports the interpretation
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Figure 4. Distribution of MB waiting times for N = 99 and N = 198 at T = 3000 K. Further
included is the estimation for N = 198 based on the central hypothesis (H99). The time axis for this
curve has been shifted by a factor of 1.3.

that apart from a scaling factor finite-size effects are not relevant for N = 99. Actually,
this scaling factor is (if at all) only weakly temperature dependent. This is the reason why
the low-temperature activation energy for N = 99 is nearly identical to that of N = 1002
(Saksaengwijit et al 2004).

The comparison in figure 4 also reveals that long waiting times are missing for N = 198
(as expected from our theoretical predictions). These long-lived MB represent the extremes
of the heterogeneities of the landscape. The apparent disappearance of the long-time tail for
N = 198 again shows that interesting information is averaged out for simple statistical reasons
when increasing the system size.

4. Summary

We have revisited the question of finite-size effects in silica. From previous work it was clear
that significant finite-size effects (a factor of 2 in the diffusion constant) are present when
going to system sizes significantly smaller than 1000 particles. However, the present work has
revealed that for many types of analysis a system size of N = 99 is already sufficient in the
range of temperatures accessible to present-day computer simulations. In particular we have
shown that the thermodynamic properties, relevant for the landscape analysis, do not show any
relevant finite-size effects. For the dynamic properties, related to the coarse-grained description
of the MB and thus to the late β- and the α-relaxation regime, the finite-size effects for N = 99
for S(q, t) and the waiting time distribution become very small after a simple scaling of the
time axis. Thus, with respect to finite-size effects BKS-silica behaves very similarly to the
Lennard-Jones system except for some additional (nearly temperature-independent) scaling of
the time axis.

Naturally, the large length scales, obtained from analysis of higher-order correlation
functions (see, e.g., Glotzer et al (2000)), would very likely show much stronger finite-size
effects. The interesting question emerges why this is not reflected in the two-time correlation
function S(q, t).
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